domingo, 17 de mayo de 2009

Espacio vectorial



Un espacio vectorial es un conjunto de objetos (llamados vectores) que pueden escalarse y sumarse.
Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios vectoriales se les llama vectores. Sobre los vectores pueden realizarse dos operaciones: escalarse (multiplicarlos por un escalar) y sumarse. Estas dos operaciones se tienen que ceñir a un conjunto de axiomas que generalizan las propiedades comunes de las tuplas de números reales así como de los vectores en el espacio euclídeo. Un concepto importante es el de dimensión.
Los espacios vectoriales tienen aplicaciones en otras ramas de la matemática, la ciencia y la ingeniería. Se utilizan en métodos como las series de Fourier, que se utiliza en las rutinas modernas de compresión de imágenes y sonido, o proporcionan el marco para resolver ecuaciones en derivadas parciales. Además, los espacios vectoriales proporcionan una forma abstracta libre de coordenadas de tratar con objetos geométricos y físicos, tales como tensores, que a su vez permiten estudiar las propiedades locales de variedades mediante técnicas de linealización.
Definición formal

La definición de un espacio vectorial requiere de un cuerpo de escalares K (como el cuerpo de los números reales o el cuerpo de los números complejos). Un espacio vectorial es un conjunto V (no vacío) a cuyos elementos se llaman vectores, dotado de dos operaciones:
suma de vectores: cualquiera dos vectores v y w pueden sumarse para obtener un tercer vector v + w
producto por un escalar: cualquier vector v puede multiplicarse por un escalar, i.e. un elemento de K, a. El producto se denota como av.
que satisfacen las siguientes propiedades o axiomas (u, v, w son vectores arbitrarios de V, y a, b son escalares, respectivamente):
Propiedad
Propiedad asociativa de la suma
u + (v + w) = (u + v) + w
Propiedad conmutativa de la suma
v + w = w + v
Existencia de elemento neutro o nulo de la suma
Existe un elemento 0 ∈ V, llamado vector cero o nulo, de forma que v + 0 = v para todo v ∈ V.
Existencia de elemento opuesto o simétrico de la suma
Para todo v ∈ V, existe un elemento -v ∈ V, llamado opuesto de v, de forma que v + (-v) = 0.
Propiedad distributiva del producto por un escalar respecto a la suma de vectores
a (v + w) = a v + a w
Propiedad distributiva del producto por un vector respecto a la suma de escalares
(a + b) v = a v + b v
Propiedad asociativa mixta del producto por un escalar
a (b v) = (ab) v[nb 1]
Existencia de elemento unidad del producto por un escalar
1 v = v, donde 1 es la identidad multiplicativa en K
Propiedades del espacio vectorial.

Hay una serie de propiedades que se demuestran fácilmente a partir de los axiomas del espacio vectorial. Algunas de ellas se derivan de la teoría elemental de grupos, aplicada al grupo (aditivo) de vectores: por ejemplo, el vector nulo 0 Є V, y el opuesto -v de un vector v son únicos. Otras propiedades se pueden derivar de la propiedad distributiva, por ejemplo, la multiplicación por el escalar cero da el vector nulo y ningún otro escalar multiplicado por un vector da cero:
Propiedad

Unicidad del vector nulo
Unicidad del opuesto de un vector
Producto por el escalar cero
0 v = 0. El 0 es el único escalar que cumple esta propiedad.
Producto de un escalar por el vector nulo
a 0 = 0
Opuesto del producto de un vector por un escalar
- (a v) = (-a) v = a (-v)

No hay comentarios:

Publicar un comentario