martes, 17 de febrero de 2009
LEONHARD EULER
Leonhard Euler (nombre completo, Leonhard Paul Euler) nació el 15 de abril de 1707 en Basilea, Suiza, y murió el 18 de septiembre de 1783 en San Petersburgo, Rusia. Fue un respetado matemático y físico, y está considerado como el principal matemático del siglo XVIII y como uno de los más grandes de todos los tiempos.
Vivió en Rusia y Alemania la mayor parte de su vida y realizó importantes descubrimientos en áreas tan diversas como el cálculo o la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el área del análisis matemático, como por ejemplo la noción de función matemática.1 También se le conoce por sus trabajos en los campos de la mecánica, óptica y astronomía.
Euler ha sido uno de los matemáticos más prolíficos, y se calcula que sus obras completas reunidas podrían ocupar entre 60 y 80 volúmenes.2 Una afirmación atribuida a Pierre-Simon Laplace expresa la influencia de Euler en los matemáticos posteriores: «Lean a Euler, lean a Euler, él es el maestro de todos nosotros.»3
En conmemoración suya, Euler ha aparecido en la serie sexta de los billetes de 10 francos suizos, así como en numerosos sellos postales tanto suizos como alemanes y rusos. El asteroide (2002) Euler recibió ese nombre en su honor.
Biografía
Euler nació en Basilea, Suiza, hijo de Paul Euler, un pastor luterano, y de Marguerite Brucker, hija de otro pastor. Tuvo dos hermanas pequeñas llamadas Anna Maria y Maria Magdalena. Poco después de su nacimiento, su familia se trasladó desde Basilea a la ciudad de Riehen, en donde Euler pasó su infancia. Por su parte, Paul Euler era amigo de la familia Bernoulli, famosa familia de matemáticos entre los que destacaba Johann Bernoulli, que en ese momento era ya considerado el principal matemático europeo, y que ejercería una gran influencia sobre el joven Leonhard.
La educación formal de Euler comenzó en la ciudad de Basilea, donde le enviaron a vivir con su abuela materna. A la edad de trece años se matriculó en la Universidad de Basilea, y en 1723 recibiría el título de maestro de Filosofía tras una disertación comparativa de las filosofías de René Descartes e Isaac Newton. Por entonces, Euler recibía lecciones particulares de Johann Bernoulli todos los sábados por la tarde, que descubrió rápidamente el increíble talento de su nuevo pupilo para las matemáticas.4
En aquella época Euler se dedicaba al estudio de teología, griego, y hebreo siguiendo los deseos de su padre, y con la vista puesta en convertirse también en pastor. Johann Bernoulli intervino para convencer a Paul Euler de que Leonhard estaba destinado a convertirse en un gran matemático. En 1726 Euler finalizó su Doctorado sobre la disertación sobre la propagación del sonido bajo el título De Sono5 y en 1727 participó en el concurso promovido por la Academia de las Ciencias Francesa por el cual se solicitaba a los concursantes que encontraran la mejor forma posible de ubicar el mástil en un buque. Ganó el segundo puesto, detrás de Pierre Bouguer, que es conocido por ser el padre de la arquitectura naval. Más adelante Euler conseguiría ganar ese premio hasta en doce ocasiones.
San Petersburgo
Por aquella época, los dos hijos de Johann Bernoulli, Daniel y Nicolas, se encontraban trabajando en la Academia Imperial Rusa de las Ciencias en San Petersburgo. En julio de 1726, Nicolás murió de apendicitis tras haber vivido un año en Rusia y, cuando Daniel asumió el cargo de su hermano en la división de matemáticas y física, recomendó que el puesto que había dejado vacante en fisiología fuese ocupado por su amigo Euler. En noviembre de ese mismo año Euler aceptó la oferta, aunque retrasó su salida hacia San Petersburgo mientras que intentaba conseguir, sin éxito, un puesto de profesor de física en la Universidad de Basilea.7
Euler llegó a la capital rusa el 17 de mayo de 1727. Fue ascendido desde su puesto en el departamento médico de la academia a un puesto en el departamento de matemáticas, en el que trabajó con Daniel Bernoulli, a menudo en estrecha colaboración. Euler aprendió el ruso y se estableció finalmente en San Petersburgo a vivir. Llegó incluso a tomar un trabajo adicional como médico de la Armada Rusa.8
La Academia de San Petersburgo, creada por Pedro I el Grande, tenía el objetivo de mejorar el nivel educativo en Rusia y de reducir la diferencia científica existente entre ese país y Europa Occidental. Como resultado, se implementaron una serie de medidas para atraer a eruditos extranjeros como Euler. La academia poseía amplios recursos financieros y una biblioteca muy extensa, extraída directamente de las bibliotecas privadas de Pedro I y de la nobleza. La Academia admitía a un número muy reducido de estudiantes para facilitar la labor de enseñanza, a la vez que se enfatizaba la labor de investigación y se ofrecía a la facultad tanto el tiempo como la libertad para resolver cuestiones científicas.6
Sin embargo, la principal benefactora de la Academia, la emperatriz Catalina I de Rusia, que había continuado con las políticas progresistas de su marido, murió el mismo día de la llegada de Euler a Rusia. Su muerte incrementó el poder de la nobleza, puesto que el nuevo emperador pasó a ser Pedro II de Rusia, por entonces un niño de tan sólo doce años de edad. La nobleza sospechaba de los científicos extranjeros de la Academia, por lo que cortó la cuantía de recursos dedicados a la misma y provocó otra serie de dificultades para Euler y sus colegas.
Las condiciones mejoraron ligeramente tras la muerte de Pedro II, y Euler fue poco a poco ascendiendo en la jerarquía de la Academia, convirtiéndose en profesor de físicas en 1731. Dos años más tarde, Daniel Bernoulli, harto de las dificultades que le planteaban la censura y la hostilidad a la que se enfrentaban en San Petersburgo, dejó la ciudad y volvió a Basilea. Euler le sucedió como director del departamento de matemáticas.9
El 7 de enero de 1734 Euler contrajo matrimonio con Katharina Gsell, hija de un pintor de la Academia. La joven pareja compró una casa al lado del río Neva y llegó a concebir hasta trece hijos, si bien sólo cinco sobrevivieron hasta la edad adulta.
Berlín
Preocupado por los acontecimientos políticos que estaban teniendo lugar en Rusia, Euler partió de San Petersburgo el 19 de junio de 1741 para aceptar un cargo en la Academia de Berlín, cargo que le había sido ofrecido por Federico II el Grande, rey de Prusia. Vivió veinticinco años en Berlín, en donde escribió más de 380 artículos. También publicó aquí dos de sus principales obras: la Introductio in analysin infinitorum, un texto sobre las funciones matemáticas publicado en 1748, y la Institutiones calculi differentialis,11 publicada en 1755 y que versaba sobre el cálculo diferencial.12
Además, se le ofreció a Euler un puesto como tutor de la princesa de Anhalt-Dessau, la sobrina de Federico. Euler escribió más de 200 cartas dirigidas a la princesa que más tarde serían recopiladas en un volumen titulado Cartas de Euler sobre distintos Temas de Filosofía Natural dirigidas a una Princesa Alemana. Este trabajo recopilaba la exposición de Euler sobre varios temas de físicas y matemáticas, así como una visión de su personalidad y de sus creencias religiosas. El libro se convirtió en el más leído de todas sus obras, y fue publicado a lo largo y ancho del continente europeo y en los Estados Unidos. La popularidad que llegaron a alcanzar estas Cartas sirve de testimonio sobre la habilidad de Euler de comunicar cuestiones científicas a una audiencia menos cualificada.12
Sin embargo, y a pesar de la inmensa contribución de Euler al prestigio de la Academia, fue finalmente obligado a dejar Berlín. El motivo de esto fue, en parte, un conflicto de personalidad entre el matemático y el propio Federico, que llegó a ver a Euler como una persona muy poco sofisticada, y especialmente en comparación con el círculo de filósofos que el rey alemán había logrado congregar en la Academia. Voltaire, en particular, era uno de esos filósofos, y gozaba de una posición preeminente en el círculo social del rey. Euler, como un simple hombre de carácter religioso y trabajador, era muy convencional en sus creencias y en sus gustos, representando en cierta forma lo contrario que Voltaire. Euler tenía conocimientos limitados de retórica, y solía debatir cuestiones sobre las que tenía pocos conocimientos, lo cual le hacía un objetivo frecuente de los ataques del filósofo.12 Por ejemplo, Euler protagonizó varias discusiones metafísicas con Voltaire, de las que solía retirarse enfurecido por su incapacidad en la retórica y la metafísica. Federico también mostró su descontento con las habilidades prácticas de ingeniería de Euler:
Quería tener una bomba de agua en mi jardín: Euler calculó la fuerza necesaria de las ruedas para elevar el agua a una reserva, desde la que caería después a través de canalizaciones para finalmente manar en Sanssouci. Mi molino fue construido de forma geométrica y no podía elevar una bocanada de agua hasta más allá de cinco pasos hacia la reserva. ¡Vanidad de las vanidades! ¡Vanidad de la geometría!
Federico II el Grande
Deterioro de la visión
La vista de Euler fue empeorando a lo largo de su vida. En el año 1735 Euler sufrió una fiebre casi fatal y, tres años después de dicho acontecimiento, quedó casi ciego de su ojo derecho. Euler, sin embargo, prefería acusar de este hecho al trabajo de cartografía que realizaba para la Academia de San Petersburgo.
La vista de ese ojo empeoró a lo largo de su estancia en Alemania, hasta el punto de que Federico hacía referencia a él como el Cíclope. Euler más tarde sufrió cataratas en su ojo sano, el izquierdo, lo que le dejó prácticamente ciego pocas semanas después de su diagnóstico. A pesar de ello, parece que sus problemas de visión no afectaron a su productividad intelectual, dado que lo compensó con su gran capacidad de cálculo mental y su memoria fotográfica. Por ejemplo, Euler era capaz de repetir la Eneida de Virgilio desde el comienzo hasta el final y sin dudar en ningún momento, y en cada página de la edición era capaz de indicar qué línea era la primera y cuál era la última.2 También se sabía de memoria las fórmulas de trigonometría y las primeras 6 potencias de los primeros 100 números primos.15
Pasó los últimos años de su vida ciego, pero siguió trabajando. Muchos trabajos se los dictó a su hijo mayor.
Retorno a Rusia
La situación en Rusia había mejorado enormemente tras el ascenso de Catalina la Grande, por lo que en 1766 Euler aceptó una invitación para volver a la Academia de San Petersburgo para pasar ahí el resto de su vida. Su segunda época en Rusia, sin embargo, estuvo marcada por la tragedia: un incendio en San Petersburgo en 1771 le costó su casa y casi su vida y en 1773 perdió a su esposa, que por entonces tenía 40 años de edad. Euler se volvió a casar tres años más tarde.
El 18 de septiembre de 1783 Euler falleció en la ciudad de San Petersburgo tras sufrir un ictus, y fue enterrado junto con su esposa en el Cementerio Luterano ubicado en la isla de Vasilievsky. Hoy en día el cementerio en el que fue enterrado Euler no existe, dado que fue destruido por los soviéticos. Éstos trasladaron previamente sus restos al monasterio ortodoxo de Alejandro Nevski.
Contribución a las matemáticas y a otras áreas científicas
Euler trabajó prácticamente en todas las áreas de las matemáticas: geometría, cálculo, trigonometría, álgebra, teoría de números, además de física continua, teoría lunar y otras áreas de la física. Ha sido uno de los matemáticos más prolíficos de la historia. Su actividad de publicación fue incesante (un promedio de 800 páginas de artículos al año en su época de mayor producción, entre 1727 y 1783), y una buena parte de su obra completa está sin publicar. La labor de recopilación y publicación completa de sus trabajos, llamados Opera Omnia,17 comenzó en 1911 y hasta la fecha ha llegado a publicar 76 volúmenes. El proyecto inicial planeaba el trabajo sobre 887 títulos en 72 volúmenes. Se le considera el ser humano con mayor número de trabajos y artículos en cualquier campo del saber, sólo equiparable a Gauss. Si se imprimiesen todos sus trabajos, muchos de los cuales son de una importancia fundamental, ocuparían entre 60 y 80 volúmenes.2 Además, y según el matemático Hanspeter Kraft, presidente de la Comisión Euler de la Universidad de Basilea, no se ha estudiado más de un 10% de sus escritos.18 Por todo ello, el nombre de Euler está asociado a un gran número de cuestiones matemáticas.
Notación matemática
Euler introdujo y popularizó varias convenciones referentes a la notación en los escritos matemáticos en sus numerosos y muy utilizados libros de texto. Posiblemente lo más notable fue la introducción del concepto de función matemática,1 siendo el primero en escribir f(x) para hacer referencia a la función f aplicada sobre el argumento x. Esta nueva forma de notación ofrecía más comodidad frente a los rudimentarios métodos del cálculo infinitesimal existentes hasta la fecha, iniciados por Newton y Leibniz, pero desarrollados basándose en las matemáticas del último.
También introdujo la notación moderna de las funciones trigonométricas, la letra e como base del logaritmo natural o neperiano (el número e es conocido también como el número de Euler), la letra griega Σ como símbolo de los sumatorios y la letra i para hacer referencia a la unidad imaginaria.19 El uso de la letra griega π para hacer referencia al cociente entre la longitud de la circunferencia y la longitud de su diámetro también fue popularizado por Euler, aunque él no fue el primero en usar ese símbolo.
Análisis
El desarrollo del cálculo era una de las cuestiones principales de la investigación matemática del siglo XVIII, y la familia Bernoulli había sido responsable de gran parte del progreso realizado hasta entonces. Gracias a su influencia, el estudio del cálculo se convirtió en uno de los principales objetos del trabajo de Euler. Si bien algunas de sus demostraciones matemáticas no son aceptables bajo los estándares modernos de rigor matemático,21 es cierto que sus ideas supusieron grandes avances en ese campo.
El número e
Euler definió la constante matemática conocida como número e como aquel número real tal que el valor de su derivada (la pendiente de su línea tangente) en la función f(x) = ex en el punto x = 0 es exactamente 1. La función ex es también llamada función exponencial y su función inversa es el logaritmo natural, también llamado logaritmo neperiano o logaritmo en base e.
El número e puede ser representado como un número real en varias formas: como una serie infinita, un producto infinito, una fracción continua o como el límite de una sucesión.
Además, Euler es muy conocido por su análisis y su frecuente utilización de la serie de potencias, es decir, la expresión de funciones como una suma infinita de términos.
Leonhard Euler (nombre completo, Leonhard Paul Euler) nació el 15 de abril de 1707 en Basilea, Suiza, y murió el 18 de septiembre de 1783 en San Petersburgo, Rusia. Fue un respetado matemático y físico, y está considerado como el principal matemático del siglo XVIII y como uno de los más grandes de todos los tiempos.
Vivió en Rusia y Alemania la mayor parte de su vida y realizó importantes descubrimientos en áreas tan diversas como el cálculo o la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el área del análisis matemático, como por ejemplo la noción de función matemática.1 También se le conoce por sus trabajos en los campos de la mecánica, óptica y astronomía.
Euler ha sido uno de los matemáticos más prolíficos, y se calcula que sus obras completas reunidas podrían ocupar entre 60 y 80 volúmenes.2 Una afirmación atribuida a Pierre-Simon Laplace expresa la influencia de Euler en los matemáticos posteriores: «Lean a Euler, lean a Euler, él es el maestro de todos nosotros.»3
En conmemoración suya, Euler ha aparecido en la serie sexta de los billetes de 10 francos suizos, así como en numerosos sellos postales tanto suizos como alemanes y rusos. El asteroide (2002) Euler recibió ese nombre en su honor.
Biografía
Euler nació en Basilea, Suiza, hijo de Paul Euler, un pastor luterano, y de Marguerite Brucker, hija de otro pastor. Tuvo dos hermanas pequeñas llamadas Anna Maria y Maria Magdalena. Poco después de su nacimiento, su familia se trasladó desde Basilea a la ciudad de Riehen, en donde Euler pasó su infancia. Por su parte, Paul Euler era amigo de la familia Bernoulli, famosa familia de matemáticos entre los que destacaba Johann Bernoulli, que en ese momento era ya considerado el principal matemático europeo, y que ejercería una gran influencia sobre el joven Leonhard.
La educación formal de Euler comenzó en la ciudad de Basilea, donde le enviaron a vivir con su abuela materna. A la edad de trece años se matriculó en la Universidad de Basilea, y en 1723 recibiría el título de maestro de Filosofía tras una disertación comparativa de las filosofías de René Descartes e Isaac Newton. Por entonces, Euler recibía lecciones particulares de Johann Bernoulli todos los sábados por la tarde, que descubrió rápidamente el increíble talento de su nuevo pupilo para las matemáticas.4
En aquella época Euler se dedicaba al estudio de teología, griego, y hebreo siguiendo los deseos de su padre, y con la vista puesta en convertirse también en pastor. Johann Bernoulli intervino para convencer a Paul Euler de que Leonhard estaba destinado a convertirse en un gran matemático. En 1726 Euler finalizó su Doctorado sobre la disertación sobre la propagación del sonido bajo el título De Sono5 y en 1727 participó en el concurso promovido por la Academia de las Ciencias Francesa por el cual se solicitaba a los concursantes que encontraran la mejor forma posible de ubicar el mástil en un buque. Ganó el segundo puesto, detrás de Pierre Bouguer, que es conocido por ser el padre de la arquitectura naval. Más adelante Euler conseguiría ganar ese premio hasta en doce ocasiones.
San Petersburgo
Por aquella época, los dos hijos de Johann Bernoulli, Daniel y Nicolas, se encontraban trabajando en la Academia Imperial Rusa de las Ciencias en San Petersburgo. En julio de 1726, Nicolás murió de apendicitis tras haber vivido un año en Rusia y, cuando Daniel asumió el cargo de su hermano en la división de matemáticas y física, recomendó que el puesto que había dejado vacante en fisiología fuese ocupado por su amigo Euler. En noviembre de ese mismo año Euler aceptó la oferta, aunque retrasó su salida hacia San Petersburgo mientras que intentaba conseguir, sin éxito, un puesto de profesor de física en la Universidad de Basilea.7
Euler llegó a la capital rusa el 17 de mayo de 1727. Fue ascendido desde su puesto en el departamento médico de la academia a un puesto en el departamento de matemáticas, en el que trabajó con Daniel Bernoulli, a menudo en estrecha colaboración. Euler aprendió el ruso y se estableció finalmente en San Petersburgo a vivir. Llegó incluso a tomar un trabajo adicional como médico de la Armada Rusa.8
La Academia de San Petersburgo, creada por Pedro I el Grande, tenía el objetivo de mejorar el nivel educativo en Rusia y de reducir la diferencia científica existente entre ese país y Europa Occidental. Como resultado, se implementaron una serie de medidas para atraer a eruditos extranjeros como Euler. La academia poseía amplios recursos financieros y una biblioteca muy extensa, extraída directamente de las bibliotecas privadas de Pedro I y de la nobleza. La Academia admitía a un número muy reducido de estudiantes para facilitar la labor de enseñanza, a la vez que se enfatizaba la labor de investigación y se ofrecía a la facultad tanto el tiempo como la libertad para resolver cuestiones científicas.6
Sin embargo, la principal benefactora de la Academia, la emperatriz Catalina I de Rusia, que había continuado con las políticas progresistas de su marido, murió el mismo día de la llegada de Euler a Rusia. Su muerte incrementó el poder de la nobleza, puesto que el nuevo emperador pasó a ser Pedro II de Rusia, por entonces un niño de tan sólo doce años de edad. La nobleza sospechaba de los científicos extranjeros de la Academia, por lo que cortó la cuantía de recursos dedicados a la misma y provocó otra serie de dificultades para Euler y sus colegas.
Las condiciones mejoraron ligeramente tras la muerte de Pedro II, y Euler fue poco a poco ascendiendo en la jerarquía de la Academia, convirtiéndose en profesor de físicas en 1731. Dos años más tarde, Daniel Bernoulli, harto de las dificultades que le planteaban la censura y la hostilidad a la que se enfrentaban en San Petersburgo, dejó la ciudad y volvió a Basilea. Euler le sucedió como director del departamento de matemáticas.9
El 7 de enero de 1734 Euler contrajo matrimonio con Katharina Gsell, hija de un pintor de la Academia. La joven pareja compró una casa al lado del río Neva y llegó a concebir hasta trece hijos, si bien sólo cinco sobrevivieron hasta la edad adulta.
Berlín
Preocupado por los acontecimientos políticos que estaban teniendo lugar en Rusia, Euler partió de San Petersburgo el 19 de junio de 1741 para aceptar un cargo en la Academia de Berlín, cargo que le había sido ofrecido por Federico II el Grande, rey de Prusia. Vivió veinticinco años en Berlín, en donde escribió más de 380 artículos. También publicó aquí dos de sus principales obras: la Introductio in analysin infinitorum, un texto sobre las funciones matemáticas publicado en 1748, y la Institutiones calculi differentialis,11 publicada en 1755 y que versaba sobre el cálculo diferencial.12
Además, se le ofreció a Euler un puesto como tutor de la princesa de Anhalt-Dessau, la sobrina de Federico. Euler escribió más de 200 cartas dirigidas a la princesa que más tarde serían recopiladas en un volumen titulado Cartas de Euler sobre distintos Temas de Filosofía Natural dirigidas a una Princesa Alemana. Este trabajo recopilaba la exposición de Euler sobre varios temas de físicas y matemáticas, así como una visión de su personalidad y de sus creencias religiosas. El libro se convirtió en el más leído de todas sus obras, y fue publicado a lo largo y ancho del continente europeo y en los Estados Unidos. La popularidad que llegaron a alcanzar estas Cartas sirve de testimonio sobre la habilidad de Euler de comunicar cuestiones científicas a una audiencia menos cualificada.12
Sin embargo, y a pesar de la inmensa contribución de Euler al prestigio de la Academia, fue finalmente obligado a dejar Berlín. El motivo de esto fue, en parte, un conflicto de personalidad entre el matemático y el propio Federico, que llegó a ver a Euler como una persona muy poco sofisticada, y especialmente en comparación con el círculo de filósofos que el rey alemán había logrado congregar en la Academia. Voltaire, en particular, era uno de esos filósofos, y gozaba de una posición preeminente en el círculo social del rey. Euler, como un simple hombre de carácter religioso y trabajador, era muy convencional en sus creencias y en sus gustos, representando en cierta forma lo contrario que Voltaire. Euler tenía conocimientos limitados de retórica, y solía debatir cuestiones sobre las que tenía pocos conocimientos, lo cual le hacía un objetivo frecuente de los ataques del filósofo.12 Por ejemplo, Euler protagonizó varias discusiones metafísicas con Voltaire, de las que solía retirarse enfurecido por su incapacidad en la retórica y la metafísica. Federico también mostró su descontento con las habilidades prácticas de ingeniería de Euler:
Quería tener una bomba de agua en mi jardín: Euler calculó la fuerza necesaria de las ruedas para elevar el agua a una reserva, desde la que caería después a través de canalizaciones para finalmente manar en Sanssouci. Mi molino fue construido de forma geométrica y no podía elevar una bocanada de agua hasta más allá de cinco pasos hacia la reserva. ¡Vanidad de las vanidades! ¡Vanidad de la geometría!
Federico II el Grande
Deterioro de la visión
La vista de Euler fue empeorando a lo largo de su vida. En el año 1735 Euler sufrió una fiebre casi fatal y, tres años después de dicho acontecimiento, quedó casi ciego de su ojo derecho. Euler, sin embargo, prefería acusar de este hecho al trabajo de cartografía que realizaba para la Academia de San Petersburgo.
La vista de ese ojo empeoró a lo largo de su estancia en Alemania, hasta el punto de que Federico hacía referencia a él como el Cíclope. Euler más tarde sufrió cataratas en su ojo sano, el izquierdo, lo que le dejó prácticamente ciego pocas semanas después de su diagnóstico. A pesar de ello, parece que sus problemas de visión no afectaron a su productividad intelectual, dado que lo compensó con su gran capacidad de cálculo mental y su memoria fotográfica. Por ejemplo, Euler era capaz de repetir la Eneida de Virgilio desde el comienzo hasta el final y sin dudar en ningún momento, y en cada página de la edición era capaz de indicar qué línea era la primera y cuál era la última.2 También se sabía de memoria las fórmulas de trigonometría y las primeras 6 potencias de los primeros 100 números primos.15
Pasó los últimos años de su vida ciego, pero siguió trabajando. Muchos trabajos se los dictó a su hijo mayor.
Retorno a Rusia
La situación en Rusia había mejorado enormemente tras el ascenso de Catalina la Grande, por lo que en 1766 Euler aceptó una invitación para volver a la Academia de San Petersburgo para pasar ahí el resto de su vida. Su segunda época en Rusia, sin embargo, estuvo marcada por la tragedia: un incendio en San Petersburgo en 1771 le costó su casa y casi su vida y en 1773 perdió a su esposa, que por entonces tenía 40 años de edad. Euler se volvió a casar tres años más tarde.
El 18 de septiembre de 1783 Euler falleció en la ciudad de San Petersburgo tras sufrir un ictus, y fue enterrado junto con su esposa en el Cementerio Luterano ubicado en la isla de Vasilievsky. Hoy en día el cementerio en el que fue enterrado Euler no existe, dado que fue destruido por los soviéticos. Éstos trasladaron previamente sus restos al monasterio ortodoxo de Alejandro Nevski.
Contribución a las matemáticas y a otras áreas científicas
Euler trabajó prácticamente en todas las áreas de las matemáticas: geometría, cálculo, trigonometría, álgebra, teoría de números, además de física continua, teoría lunar y otras áreas de la física. Ha sido uno de los matemáticos más prolíficos de la historia. Su actividad de publicación fue incesante (un promedio de 800 páginas de artículos al año en su época de mayor producción, entre 1727 y 1783), y una buena parte de su obra completa está sin publicar. La labor de recopilación y publicación completa de sus trabajos, llamados Opera Omnia,17 comenzó en 1911 y hasta la fecha ha llegado a publicar 76 volúmenes. El proyecto inicial planeaba el trabajo sobre 887 títulos en 72 volúmenes. Se le considera el ser humano con mayor número de trabajos y artículos en cualquier campo del saber, sólo equiparable a Gauss. Si se imprimiesen todos sus trabajos, muchos de los cuales son de una importancia fundamental, ocuparían entre 60 y 80 volúmenes.2 Además, y según el matemático Hanspeter Kraft, presidente de la Comisión Euler de la Universidad de Basilea, no se ha estudiado más de un 10% de sus escritos.18 Por todo ello, el nombre de Euler está asociado a un gran número de cuestiones matemáticas.
Notación matemática
Euler introdujo y popularizó varias convenciones referentes a la notación en los escritos matemáticos en sus numerosos y muy utilizados libros de texto. Posiblemente lo más notable fue la introducción del concepto de función matemática,1 siendo el primero en escribir f(x) para hacer referencia a la función f aplicada sobre el argumento x. Esta nueva forma de notación ofrecía más comodidad frente a los rudimentarios métodos del cálculo infinitesimal existentes hasta la fecha, iniciados por Newton y Leibniz, pero desarrollados basándose en las matemáticas del último.
También introdujo la notación moderna de las funciones trigonométricas, la letra e como base del logaritmo natural o neperiano (el número e es conocido también como el número de Euler), la letra griega Σ como símbolo de los sumatorios y la letra i para hacer referencia a la unidad imaginaria.19 El uso de la letra griega π para hacer referencia al cociente entre la longitud de la circunferencia y la longitud de su diámetro también fue popularizado por Euler, aunque él no fue el primero en usar ese símbolo.
Análisis
El desarrollo del cálculo era una de las cuestiones principales de la investigación matemática del siglo XVIII, y la familia Bernoulli había sido responsable de gran parte del progreso realizado hasta entonces. Gracias a su influencia, el estudio del cálculo se convirtió en uno de los principales objetos del trabajo de Euler. Si bien algunas de sus demostraciones matemáticas no son aceptables bajo los estándares modernos de rigor matemático,21 es cierto que sus ideas supusieron grandes avances en ese campo.
El número e
Euler definió la constante matemática conocida como número e como aquel número real tal que el valor de su derivada (la pendiente de su línea tangente) en la función f(x) = ex en el punto x = 0 es exactamente 1. La función ex es también llamada función exponencial y su función inversa es el logaritmo natural, también llamado logaritmo neperiano o logaritmo en base e.
El número e puede ser representado como un número real en varias formas: como una serie infinita, un producto infinito, una fracción continua o como el límite de una sucesión.
Además, Euler es muy conocido por su análisis y su frecuente utilización de la serie de potencias, es decir, la expresión de funciones como una suma infinita de términos.
Suscribirse a:
Entradas (Atom)